Singularity and Monodromy of Quasi-Hypergeometric Functions

Kazuhiko Aomoto and Kazumoto Iguchi

Dedicated to Richard Askey

1. Introduction

Let \(r, s \) be non-negative integers. Consider the series

\[
F(x) = \sum_{\nu=0}^{\infty} \frac{\Gamma(\alpha'_1 + \beta'_1 \nu) \cdots \Gamma(\alpha'_r + \beta'_r \nu)}{\Gamma(\alpha_1 + \beta_1 \nu) \cdots \Gamma(\alpha_s + \beta_s \nu) \nu!} x^\nu
\]

in \(x \in \mathbb{C} \) for suitable complex numbers \(\alpha'_1, \ldots, \alpha'_r, \alpha_1, \ldots, \alpha_s, \) and positive numbers \(\beta'_1, \ldots, \beta'_r, \beta_1, \ldots, \beta_s, \) which have the relation

\[
\beta'_1 + \cdots + \beta'_r = \beta_1 + \cdots + \beta_s + 1
\]

\(F(x) \) is convergent for \(|x| < c \) where \(c \) denotes the constant

\[
c = \beta'_1 - \beta'_r \cdots \beta'_r - \beta'_r \beta_1 \cdots \beta_s
\]

These functions including Lambert series have recently appeared in physics literatures of fractional exclusion statistics (see [8, 11, 12, 17, 18], etc.) In [7] I.M. Gelfand and M.I. Graev have studied them in a systematic way in both regular and irregular singular cases. In [2] we have formulated them only for regular singularity. In this note we restrict ourselves to this case of a single variable. It seems important to study their singularities and monodromy properties at the branch point \(x = c \), both from mathematical and physical point of views. We give an answer to this problem (see Theorem 1).

In [2] and [7] it has been shown that they are characterized by certain difference and differential equations, so that there arises a monodromy problem for solutions by an analytic continuation. We give a conjecture for this problem (see Conjecture) and give an answer in simple cases, by using integral representations for these functions.
We define two exponents γ, δ which will be frequently used

$$\gamma = \alpha'_1 + \cdots + \alpha'_r - \alpha_1 - \cdots - \alpha_s + s,$$

$$\delta = -\gamma + \frac{n}{2}$$

where we put $n = r + s - 1$.

For $\sigma > 0$ and $\alpha, \beta \in \mathbb{C}$, we define the Erdelyi-Kober operator $P_\sigma(\alpha, \beta)$ as

$$P_\sigma(\alpha, \beta)f(x) = \frac{1}{\Gamma(\beta)} \int_0^1 t^{\alpha-1}(1-t)^{\beta-1}f(t^\sigma x)dt$$

If $\Re \alpha$ or $\Re \beta$ is not positive, the RHS in (1.4) should be a finite part of divergent integral in the sense of Hadamard-Riesz.

Then as a function of x, $F(x)$ satisfies the following fractional differential equations (E)

$$\frac{dF(x)}{dx} = \prod_{k=1}^{r} P_{\beta'_k}(\alpha'_k + \beta'_k, -\beta_k') \prod_{k=1}^{s} P_{\beta_k}(\alpha_k, \beta_k)F(x).$$

$F(x)$ is uniquely characterized by the properties that it is holomorphic at the origin $x = 0$, satisfies (E) and the following initial condition

$$F(0) = \frac{\Gamma(\alpha'_1) \cdots \Gamma(\alpha'_r)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_s)}$$

As a function of x and $\alpha'_1, \cdots \alpha'_r, \alpha_1, \cdots, \alpha_s$, F also satisfies the following difference and differential equations (E*)

$$T_{\alpha'_k}F = (\alpha'_k + \beta'_k x \frac{d}{dx})F$$

$$(E^*) \quad F = (\alpha_k + \beta_k x \frac{d}{dx})T_{\alpha_k}F$$

$$\frac{dF}{dx} = T_{\beta'_1}^{e_1} \cdots T_{\alpha'_r}^{e_r} T_{\beta_1}^{e_1} \cdots T_{\alpha_s}^{e_s} F$$

where $T_{\alpha'_k}, T_{\alpha_k}, T_{\beta'_k}, T_{\beta_k}$ denote the shift operators corresponding to the displacements $\alpha'_k \rightarrow \alpha'_k + 1, \alpha_k \rightarrow \alpha_k + 1, \alpha'_k \rightarrow \alpha'_k + \beta'_k, \alpha_k \rightarrow \alpha_k + \beta_k$ respectively.

These equations have been defined in [2]. In [7] I.M. Gelfand-M.I. Graev have also studied the same equations as (E*) in a very extensive way. However they do not restrict themselves to the relation (1.2) which is essential in our note.

$F(x)$ has a branch singularity at $x = c$ and is holomorphic in $\mathbb{C} - [c, \infty)$. In the complex x-plane, we consider the analytic continuation of $F(x)$ along a path on the real axis from the origin to $c - \epsilon$ (ϵ a small positive number.)
As is seen from the integral representation (3.3), we can show that \(F(x) \) has a convergent power series expansion at \(x = c \),

\[
F(x) = A(x) + B(x)
\]

where

\[
A(x) = (c - x)\delta \sum_{\nu=0}^{\infty} a_{\nu}(c - x)\nu,
\]

\[
B(x) = \sum_{\nu=0}^{\infty} b_{\nu}(c - x)^{\nu}
\]

The coefficients \(a_{\nu}(\nu \geq 0) \) depending on \((\alpha', \alpha) = (\alpha'_1, \ldots, \alpha'_r, \alpha_1, \ldots, \alpha_s)\) are determined recursively as follows.

From (E*), \(a_0 = a_0(\alpha', \alpha) \) satisfies the difference equations in \(\alpha' \) and \(\alpha \)

\[
T_{\alpha'_k} a_0(\alpha', \alpha) = -\beta'_k c^\delta \cdot a_0(\alpha', \alpha) \\
T_{\alpha_s} a_0(\alpha', \alpha) = -\frac{1}{\beta_k c (\delta + 1)} \cdot a_0(\alpha', \alpha)
\]

so that \(a_0(\alpha', \alpha) \) can be expressed as

\[
a_0(\alpha', \alpha) = (\beta'_1 c)^{\alpha'_1} \cdots (\beta'_r c)^{\alpha'_r} (\beta_1 c)^{-\alpha_1} \cdots (\beta_s c)^{-\alpha_s} \Gamma(-\delta) \cdot P(\alpha', \alpha)
\]

where \(P(\alpha', \alpha) \) denotes a periodic function which is periodic with the period 1 with respect to each variable of \(\alpha'_1, \ldots, \alpha'_r, \alpha_1, \ldots, \alpha_s \).

The factor \(P(\alpha', \alpha) \) is not determined by (E*).

For general \(\nu \geq 0 \) the functions

\[
\psi_{\nu}(\alpha', \alpha) = (\beta'_1 c)^{\alpha'_1} \cdots (\beta'_r c)^{\alpha'_r} (\beta_1 c)^{-\alpha_1} \cdots (\beta_s c)^{-\alpha_s} \Gamma(-\delta - \nu)
\]

satisfy the difference equations

\[
T_{\alpha'_k} \psi_{\nu}(\alpha', \alpha) = -\beta'_k c (\delta + \nu) \psi_{\nu}(\alpha', \alpha) \\
T_{\alpha_s} \psi_{\nu}(\alpha', \alpha) = -\frac{1}{\beta_k c (\delta + \nu + 1)} \psi_{\nu}(\alpha', \alpha)
\]

\[
T_{\alpha'_1} \cdots T_{\alpha'_r} T_{\alpha_1} \cdots T_{\alpha_s} \psi_{\nu}(\alpha', \alpha) = -(\delta + \nu) \psi_{\nu}(\alpha', \alpha)
\]

If we put

\[
a_{\nu}(\alpha', \alpha) = \psi_{\nu}(\alpha', \alpha) \tilde{a}_{\nu}(\alpha', \alpha)
\]

then \(\tilde{a}_{\nu}(\alpha', \alpha) \) satisfies the recurrence relations

\[
T_{\alpha'_k} \tilde{a}_{\nu}(\alpha', \alpha) - \tilde{a}_{\nu}(\alpha', \alpha) = \frac{\alpha'_k - \beta'_k (\delta + \nu - 1)}{\beta'_k c} \tilde{a}_{\nu-1}(\alpha', \alpha)
\]

\[
T_{\alpha_k} \tilde{a}_{\nu}(\alpha', \alpha) - \tilde{a}_{\nu}(\alpha', \alpha) = \frac{\alpha_k - \beta_k (\delta + \nu)}{\beta_k c} T_{\alpha_k} \tilde{a}_{\nu-1}(\alpha', \alpha)
\]

\[
T_{\alpha'_1} \cdots T_{\alpha'_r} T_{\alpha_1} \cdots T_{\alpha_s} \tilde{a}_{\nu}(\alpha', \alpha) = \tilde{a}_{\nu}(\alpha', \alpha)
\]
These equations determine uniquely $a_0(\alpha', \alpha)$, once $a_0(\alpha', \alpha)$ is given.

Remark 1. It was pointed out by A. Gyoja that the equation (E) is a micro differential operator developed by M. Sato, T. Kawai and M. Kashiwara. As a consequence of it, one can also show that $F(x)$ has the expression (1.8). For this computation see [16].

The 1st Problem which we want to pose is to evaluate $a_0(\alpha', \alpha)$ explicitly for $F(x)$.

Consider in the complex plane a loop σ_0 moving from the origin, going through $c - \epsilon$, turning positively around c and finally going back to 0. See Figure 1.

The function $F(x)$ can be continued analytically from the origin along σ_0 and we obtain the new function $\sigma_0 F(x)$.

The 2nd Problem is to express $\sigma_0 F(x)$ explicitly near $x = 0$. It can be stated more precisely as follows.

$\sigma_0 F(x)$ satisfies (E^*). There are s asymptotic series solutions to (E^*)

\[G_k(x) = x^{\rho_k} \left(\xi_{k,0} + \xi_{k,1} x^{\rho_k} + \xi_{k,2} x^{2\rho_k} + \cdots \right) \quad (1 \leq k \leq s) \]

where the coefficient $\xi_{k,0}$ in the 1st term is given by

\[\xi_{k,0}(\alpha', \alpha) = \frac{\prod_{j=1}^{r} \Gamma(\alpha_j' + \beta_j' \rho_k)}{\Gamma(\rho_k + 1) \prod_{j=1}^{s} \Gamma(\alpha_j + \beta_j \rho_k)} \]

for $\rho_k = -\alpha_k + 1 - \beta_k$.

In fact we fix k, $1 \leq k \leq s$. Suppose the asymptotic series

\[G(x) = x^{\rho_k} \left(\xi_0 + \xi_1 x^{\rho_k} + \xi_2 x^{2\rho_k} + \cdots \right) \quad (1 \geq k \geq s) \]

satisfies (E^*), then $\xi_0(\alpha', \alpha)$ satisfies

\[T_{\alpha_j'} \xi_0(\alpha', \alpha) = (\alpha_j + \beta_j \rho_k) \xi_0(\alpha', \alpha) \quad (1 \leq j \leq r) \]

\[\xi_0(\alpha', \alpha) = (\alpha + \beta \rho_k) T_{\alpha_1} \xi_0(\alpha', \alpha) \quad (1 \leq j \leq s, j \neq k) \]

\[\rho_k \xi_0(\alpha', \alpha) = T_{\alpha_1'} \cdots T_{\alpha_j'} T_{\alpha_k} \cdots T_{\alpha_s} \xi_0(\alpha', \alpha) \]

Hence $\xi_0(\alpha', \alpha)$ can be expressed as

\[\xi_0(\alpha', \alpha) = \xi_{k,0}(\alpha', \alpha) \cdot U_k \]

where U_k denotes an arbitrary periodic function with the period 1 with respect to each variable ρ_k, $\alpha_j' + \beta_j' \rho_k$ ($1 \leq j \leq r$), $\alpha_j + \beta_j \rho_k$ ($1 \leq j \leq s, j \neq k$) ξ_0 are then determined uniquely by the relations

\[\xi_0(\alpha', \alpha) = T_{\alpha_k} \xi_0(\alpha', \alpha) \]

We denote by $U_k[G_k](x)$ the asymptotic series (1.13) thus defined.
In the same way there exists the asymptotic series solution $U_0[F](x)$ satisfying (E*)

\begin{equation}
U_0[F](x) = \xi_{0,0} + \xi_{0,1}x + \xi_{0,2}x^2 + \cdots
\end{equation}

such that

\begin{equation}
\xi_{0,0} = U_0(\alpha', \alpha) \cdot F(0)
\end{equation}

where $U_0(\alpha', \alpha)$ denotes a periodic function of (α', α) with the period 1 with respect to each variable $\alpha'_1, \cdots \alpha'_r, \alpha_1, \cdots \alpha_s$.

Proposition 1 (See [7]). Every asymptotic series solution at the origin $x = 0$ to the equations (E*) can be expressed as the sum

\begin{equation}
U_0[F](x) + \sum_{k=1}^{s} U_k[G_k](x)
\end{equation}

as asymptotic series for suitable periodic functions U_0 and U_k.

In particular $W(x)$ and $\sigma_0F(x)$ can be expressed in the form (1.21).

The 2nd Problem is to determine explicitly these periodic functions for $\sigma_0F(x)$.

2. Simple Cases

In this section we consider two simple cases where $r = 2, s = 0$, and $r = s = 1$ and solve the Problems stated in the Introduction.

Case 1. $(r = 2, s = 0)$.

$F(x)$ has the form

\[
F(x) = \sum_{\nu=0}^{\infty} \frac{\Gamma(\alpha'_1 + \beta'_1 \nu) \Gamma(\alpha'_2 + \beta'_2 \nu)}{\nu!} x^\nu
\]

with $\beta'_1 + \beta'_2 = 1, \beta'_1 > 0, \beta'_2 > 0$. Then $\gamma = \alpha'_1 + \alpha'_2, \delta = -\gamma + \frac{1}{2}$ and $c = \beta'_1 - \beta'_2 > 1$. F has an integral representation

\begin{equation}
F(x) = \Gamma(\gamma) \int_0^\infty u^{\alpha'_1 - 1} (1 + u - u^{\beta'_1} x)^{-\gamma} du
\end{equation}

This has a definite meaning provided $0 < \alpha' < \gamma$, otherwise the integral should be regarded as a finite part of divergent integrals or it should be done on a suitable loop avoiding $u = 0$ or $u = \infty$.

The quasi algebraic equation

\begin{equation}
1 + u - u^{\beta'_1} x = 0
\end{equation}

has a countable number of power series solutions u_l ($l \in \mathbb{Z}$) at $x = 0$

\begin{equation}
u_l = -1 + e^{\pi(1+2l)\beta'_1} x + \cdots .
\end{equation}
When \(x \) moves from 0 to \(c \), the only 2 solutions \(u_0, u_{-1} \) (\(u_{-1} \) is the complex conjugate of \(u_0 \)) meet each other at \(x = c \). Furthermore, Im \(u_0 > 0 \), Im \(u_{-1} < 0 \) for \(0 < x < c \). See Figure 2.

We denote by \(C_0 \) the interval \([0, \infty)\) which is positively oriented, and by \(L_0 \) the oriented segment from \(u_0 \) to \(u_{-1} \). The intersection number between them is equal to \(-1\),

\[
I(C_0, L_0) = -1
\]

Consider also the integral \(W(x) \) over \(L_0 \)

\[
W(x) = \Gamma(\gamma) \int_{L_0} u^{\alpha'-1}(1 + u - u^{\beta_i}x)^{-\gamma} du
\]

which is well defined provided \(\gamma < 1 \), otherwise should be suitably regularized.

\(C_0 \) and \(L_0 \) are twisted cycles for the multivalued function \(u^{\alpha'-1}(1 + u - u^{\beta_i}x)^{-\gamma} \).

When \(x \) moves along the loop \(\sigma_0 \) from \(c - \varepsilon \) to itself, they both can be deformed in an isotopic way as follows

\[
\sigma_0 : \left\{ \begin{array}{l}
C_0 \to C_0 + (1 - e^{-2\pi i\gamma})L_0 \\
L_0 \to -e^{-2\pi i\gamma}L_0
\end{array} \right.
\]

This implies

\[
\sigma_0 F(x) = F(x) + (1 - e^{-2\pi i\gamma})W(x)
\]

\[
\sigma_0 W(x) = -e^{-2\pi i\gamma}W(x)
\]

\(W(x) \) has the power series expansion near \(x = c \) as follows

\[
W(x) = (c - x)^{\delta} \left\{ a_0^* + a_1^*(c - x) + a_2^*(c - x)^2 + \cdots \right\}
\]

In fact for \(x < c \),

\[
\frac{1 + u}{u^{\beta_i}} = c - x + \frac{1}{2} \beta_1' - \beta_2' - 1 \beta_2'^2 u - \frac{\beta_2'}{\beta_2'^2} + \cdots
\]

and

\[
u_0 = \frac{\beta_1'}{\beta_2'} + i\sqrt{2(c - x)} + \cdots
\]

\[
u_{-1} = \frac{\beta_1'}{\beta_2'} - i\sqrt{2(c - x)} + \cdots
\]

By using (2.6), (2.9), (2.10) and Euler’s formula for the Beta integral, we can evaluate \(a_0^* \) as follows.

Lemma 1.

\[
a_0^* = -i\sqrt{2\pi \beta_1' \beta_2'^3 \Gamma(1 - \gamma) \Gamma(\gamma)} \frac{\Gamma(\frac{3}{2} - \gamma)}{\Gamma(\frac{3}{2} - \gamma)}
\]
for
\[
\begin{align*}
\epsilon_1' &= \alpha_1' + \beta_1' \delta - \frac{1}{2} \\
\epsilon_2' &= \alpha_2' + \beta_2' \delta - \frac{1}{2}
\end{align*}
\]
respectively.

From (1.8), (1.9) and (2.8), we have
\[
\sigma_0 F(x) - F(x) = (e^{2\pi i \delta} - 1)(c - x)\delta \{a_0 + a_1(c - x) + \cdots\} \\
= (1 - e^{-2\pi i \gamma})(c - x)\delta \{a_0^* + a_1^*(c - x) + \cdots\}
\]
whence the equalities hold
\[
a_\nu = \frac{1 - e^{-2\pi i \gamma}}{e^{2\pi i \delta} - 1} a_\nu^* \quad (\nu \geq 0)
\]
in particular
\[
a_0 = -i \tan \pi \gamma \cdot a_0^*
\]

Therefore

Proposition 2. a_0 is evaluated as
\[
a_0 = -\sqrt{2\pi} \tan \pi \gamma \cdot \beta_1' \epsilon_1' \beta_2' \epsilon_2' \cdot \frac{\Gamma(1 - \gamma)\Gamma(\gamma)}{\Gamma\left(\frac{3}{2} - \gamma\right)}
\]
where ϵ_1', ϵ_2' are defined by (2.12).

Now let us solve the 2nd Problem. In view of (2.7), we have only to express $W(x)$ at $x = 0$.

As x decreases to $x = 0$, the cycle \mathcal{L}_0 is deformed smoothly so that $W(x)$ becomes holomorphic at $x = 0$. There the cycle \mathcal{L}_0 is identified with a loop starting from and ending in $x = -1$, and turning around 0 in a positive direction. Hence we have
\[
W(0) = \Gamma(\gamma) \int_{\mathcal{L}_0} u^{\alpha_1'-1}(1 + u)^{-\gamma}du
\]
\[
= -2i\pi \frac{\Gamma(\gamma)\Gamma(1 - \gamma)}{\Gamma(1 - \alpha_1')\Gamma(1 - \alpha_2')}
\]
\[
= -2i \frac{\sin \pi \alpha_1' \sin \pi \alpha_2'}{\sin \pi \gamma} F(0)
\]
which implies
\[
W(x) = U_0[F](x)
\]
for $U_0(\alpha_1', \alpha_2') = -2i \frac{\sin \pi \alpha_1' \sin \pi \alpha_2'}{\sin \pi \gamma}$.

We now define the functions $F_{l_1', l_2'}(x)$ for $(l_1', l_2') \in \mathbb{Z}^2$, as
\begin{equation}
F_{l_1', l_2'}(x) = \{ e^{2\pi i (l_1' \alpha_1' + l_2' \alpha_2')} [F] \}(x) = e^{2\pi i (l_1' \alpha_1' + l_2' \alpha_2')} \cdot F(e^{2\pi i (l_1' \beta_1' + l_2' \beta_2')} x).
\end{equation}

Then it is obvious that $F(x) = F_{0,0}(x)$ and $F_{l_1', l_2'}(x) = e^{2\pi i \gamma} F_{l_1'-l_2',0}(x)$.

From (2.15) and (2.16) we have
\begin{equation}
\text{PROPOSITION 3.}
\end{equation}
\begin{equation}
W(x) = \frac{1}{1 - e^{2\pi i \gamma}} \{ (e^{2\pi i \gamma} + 1) F_{0,0}(x) - F_{1,0}(x) - e^{2\pi i \gamma} F_{-1,0}(x) \}
\end{equation}

As a consequence of (2.7), we have the monodromy formula
\begin{equation}
\text{COROLLARY 1.}
\end{equation}
\begin{equation}
\sigma_0 F_{0,0}(x) = -e^{-2\pi i \gamma} F_{0,0}(x) + e^{-2\pi i \gamma} F_{1,0}(x) + F_{-1,0}(x)
\end{equation}
\begin{equation}
\sigma_0 F_{\mu,0}(x) = F_{\mu,0}(x) (\mu \neq 0).
\end{equation}

Similarly, we can also consider the analytic continuation of the functions
\begin{equation}
F_{l_1,0}(x)
\end{equation}
along a loop $\sigma_0 (\infty < \nu < \infty)$ corresponding to the movement from
the origin to itself turning around $e^{2\pi i \beta_1 \nu}$.

The monodromy formula for σ_0 is given by the simple shift of the indices l to $l + \nu$ as follows
\begin{equation}
\text{(2.18)}
\end{equation}
\begin{equation}
\sigma_0 F_{0,0}(x) = -e^{-2\pi i \gamma} F_{0,0}(x) + e^{-2\pi i \gamma} F_{\nu+1,0}(x) + F_{\nu-1,0}(x)
\end{equation}
\begin{equation}
\sigma_0 F_{\mu,0}(x) = F_{\mu,0}(x) (\mu \neq \nu).
\end{equation}

This transformation is nothing else than a Burau type representation corresponding to an infinite number of strands.

Case 2. ($r = s = 1$).

Consider the function
\begin{equation}
F(x) = \sum_{\nu=0}^{\infty} \frac{\Gamma(\alpha_1' + \beta_1' \nu)}{\Gamma(\alpha_1 + \beta_1 \nu)} x^\nu
\end{equation}
with $\beta_1' = \beta_1 + 1$, $\beta_1 > 0$. Then $\gamma = \alpha_1' + 1 - \alpha_1$, $\delta = -\gamma + 1/2$ and $c = \beta_1' - \beta_1 - \beta_1' < 1$.

The integral formula for $F(x)$ can be expressed as follows. For $0 < x < c$, the quasi algebraic equation with respect to ν
\begin{equation}
(2.20)
1 - x + v^{\beta_1'} x = 0
\end{equation}
has 2 real solutions v_0 and v_0^* such that $1 < v_0 < v_0^*$.

We denote by L_0 a loop moving from 0 to itself, passing through the open interval (v_0, v_0^*), and by L_0 the closed interval $[v_0, v_0^*]$ as in Figure 4.
Then we have

\[F(x) = \frac{\Gamma(\gamma)}{2\pi i} \int_{C_0} v^{\alpha'_1 - 1} (v - 1 - \nu^{\beta'_1} x)^{-\gamma} dv \]

(2.21)

\[= \frac{1}{\Gamma(1 - \gamma)} \int_0^{v_0} v^{\alpha'_1 - 1} (1 - v + \nu^{\beta'_1} x)^{-\gamma} dv \]

where the function \(v - 1 - \nu^{\beta'_1} x \) is taken to be positive in \((v_0, v_0^*)\).

We also put

\[W(x) = \Gamma(\gamma) \int_{L_0} v^{\alpha'_1 - 1} (v - 1 - \nu^{\beta'_1} x)^{-\gamma} dv \]

(2.22)

Remark that \(v_0(+) = 1 \) and \(v_0^*(+) = +\infty \). When \(x \) increases from 0 to \(c \), \(v_0 \) and \(v_0^* \) meet each other. The intersection number between \(C_0 \) and \(L_0 \) is equal to \(-1\), i.e., we have the same formula as (2.4).

Near \(x = c \), \(F(x) \) and \(W(x) \) have the expansions (1.8)-(1.9) and (2.8), respectively.

We have

Lemma 2.

\[a_0^* = \sqrt{2\pi \beta_1^{e_1}} \frac{e_1 \Gamma(1 - \gamma) \Gamma(\gamma)}{\Gamma(3/2 - \gamma)} \]

(2.23)

where

\[e_1 = \alpha'_1 + \beta'_1 \delta - \frac{1}{2} \]

(2.24)

and

\[e_1 = -\alpha_1 - \beta_1 \delta + \frac{1}{2} \]

In fact we have the expansions near \(x = c \) and for \(x < c \)

\[\frac{v - 1}{\nu^{\beta'_1}} = c - x - \frac{1}{2} \beta'_1^{e_1 - 1} \beta_1^{e_1 + 2} (u - \frac{\beta'_1}{\beta_1})^2 + \ldots \]

(2.25)

and

\[v_0 = \frac{\beta'_1}{\beta_1} - \sqrt{2(c - x)} + \ldots \]

(2.26)

\[v_0^* = \frac{\beta'_1}{\beta_1} + \sqrt{2(c - x)} + \ldots \]

Then the proof is similar to Lemma 1.

Since (2.6) holds, we have the transformation formula in view of (2.22),

\[\sigma_0 F(x) = F(x) + \frac{(1 - e^{-2\pi i \gamma})}{2\pi i} W(x) \]

(2.27)

\[\sigma_0 W(x) = -e^{-2\pi i \gamma} W(x) \]
so that

\begin{equation}
(2.28) \quad a_0 = -\frac{\tan \pi \gamma}{2\pi} \cdot a_0^*
\end{equation}

Combining (2.25) and (2.30), we have

Proposition 4.

\begin{equation}
(2.29) \quad a_0 = -\frac{1}{\sqrt{2\pi}} \beta_1 \beta_1^* \beta_1^* \Gamma(1 - \gamma) \Gamma(\gamma) \tan \pi \gamma.
\end{equation}

The behaviour of \(W(x) \) at \(x = 0 \) is a little more complicated than Case 1. As is seen from (2.22), when \(x \) approaches 0, \(W(x) \) has the singularity at \(x = 0 \). To make clear that singularity, we also define the function

\begin{equation}
(2.30) \quad G^*(x) = \Gamma(\gamma) \int_0^\infty v^{\alpha_1 - 1}(1 - v + v^{\beta_1}x)^{-\gamma}dv
\end{equation}

where the function \(1 - v + v^{\beta_1}x \) should be taken positive in the interval \((v_0^*, \infty)\).

We assume for simplicity that \(\alpha_1' - \beta_1^* \gamma < 0 \), so that the RHS of (2.30) converges absolutely. Since \(v_0^*(x) \) has a Puiseaux expansion at \(x = 0 \) as

\[v_0^*(x) = x^{-\frac{1}{\beta_1}} \{ 1 + O(x^{-\frac{1}{\beta_1}}) \}, \]

by making a careful estimate of (2.30), one can show that \(G^*(x) \) has the asymptotic expansion

\begin{equation}
(2.31) \quad G^*(x) = x^{\rho_1} (\xi_0^* + \xi_1^* x^{\frac{1}{\beta_1}} + \xi_2^* x^{\frac{2}{\beta_1}} + \cdots) \quad (1 \leq k \leq s)
\end{equation}

for

\begin{equation}
(2.32) \quad \rho_1 = \frac{-\alpha_1 + 1}{\beta_1}, \quad \xi_0^* = \frac{\pi \Gamma(\rho_1 + \gamma)}{\beta_1 \sin \pi \gamma \Gamma(\rho_1 + 1)}
\end{equation}

We now state

Proposition 5. \(W(x) \) **has the asymptotic expansion at** \(x = 0 \) **as**

\begin{equation}
(2.33) \quad W(x) = x^{\rho_1} (\zeta_{1,0} + \zeta_{1,1} x^{\frac{1}{\beta_1}} + \zeta_{1,2} x^{\frac{2}{\beta_1}} + \cdots) + \zeta_{0,0} + \zeta_{0,1} x + \zeta_{0,2} x^2 + \cdots
\end{equation}

where

\begin{equation}
(2.34) \quad \zeta_{1,0} = -\frac{\sin \pi (\rho_1 + \gamma)}{\sin \pi \rho_1} \xi_0^*
\end{equation}

\begin{equation}
(2.35) \quad \zeta_{0,0} = \frac{\pi \Gamma(1 - \alpha_1)}{\sin \pi \gamma \Gamma(1 - \alpha_1')} = \frac{\pi \sin \pi \alpha_1'}{\sin \pi \gamma \sin \pi \alpha_1} F(0)
\end{equation}

respectively.
Indeed, we fix a sufficiently large positive number \(h \). Then the RHS of (2.23) can be divided into two parts

\[
W(x) = \Gamma(\gamma) \int_{v_0}^{h} \{ \} dv + \Gamma(\gamma) \int_{h}^{v_0} \{ \} dv \tag{2.36}
\]

To evaluate the 2nd term, we make a change of variables \(\tilde{v} = \frac{v - 1}{v_{\beta_1}} \) and put \(\tilde{h} = \frac{h - 1}{h_{\beta_1}} \).

Then \(v \) is expanded in Laurent series of \(\tilde{v}^{\beta_1} \) as

\[
v = \tilde{v}^{-\frac{1}{\beta_1}} \varphi(\tilde{v}) \quad \text{and} \quad \varphi(\tilde{v}) = 1 + \varphi_1 \tilde{v}^{-\frac{1}{\beta_1}} + \varphi_2 \tilde{v}^{-\frac{2}{\beta_1}} + \ldots
\]

so that we have

\[
\tilde{h} \int_{\tilde{v}}^{v_0} v^\alpha_{\beta_1}^{-1} \left(v - 1 - v_{\beta_1} \right)^{-\gamma} dv
\]

\[
= \tilde{h} \int_{x}^{\tilde{h}} \left\{ \tilde{v} \varphi(\tilde{v}) \right\}^{-\alpha_1 + \beta_1} \frac{1}{\beta_1} \left(\frac{1}{\varphi(\tilde{v})} - \varphi'(\tilde{v}) \right) d\tilde{v}
\]

\[
= \tilde{h} \int x^{\rho_1 + \gamma}(\tilde{v} - x)^{-\gamma} \frac{1}{\beta_1} (1 + c_1 \tilde{v}^{-\frac{1}{\beta_1}} + c_2 \tilde{v}^{-\frac{2}{\beta_1}} + \ldots) d\tilde{v}
\]

for suitable constants \(c_1, c_2, c_3, \ldots \). The last part of (2.37) has an asymptotic form (2.33).

The first term in the last part of (2.37) can be described as

\[
= \frac{1}{\tilde{h}^{\rho_1 + \gamma}} \frac{1}{\beta_1} d\tilde{v}
\]

\[
= \frac{1}{e^{2\pi i \rho_1}} - 1 \int_{x}^{\tilde{h}} \tilde{v}^{\rho_1 + \gamma}(\tilde{v} - x)^{-\gamma} \frac{1}{\beta_1} d\tilde{v}
\]

\[
- \frac{\sin \pi \rho_1 + \gamma}{\sin \pi \rho_1} \int_{0}^{x} \tilde{v}^{\rho_1 + \gamma}(\tilde{v} - x)^{-\gamma} \frac{1}{\beta_1} d\tilde{v}
\]

where \(a \) denotes a loop starting from and ending in \(\tilde{h} \) and turning around 0 positively. The 1st term is therefore holomorphic at \(x = 0 \), while the second term equals, due to Euler formula,

\[
- \frac{\sin \pi (\rho_1 + \gamma)}{\sin \pi \rho_1} \cdot \frac{\Gamma(\rho_1 + \gamma) \Gamma(1 - \gamma)}{\Gamma(\rho_1 + 1) \beta_1} x^{\rho_1}
\]

Hence (2.33) follows.
Let us prove (2.35). The 2nd term in the RHS of (2.33) has the integral representation

\[\zeta_{0,0} + \zeta_{0,1}x + \zeta_{0,2}x^2 + \cdots \]

\[= \Gamma(\gamma) \int_{i0}^{h} v^{\alpha_1'-1}(v - 1 - v\beta_1 x)^{-\gamma} dv \]

\[+ \Gamma(\gamma) \int_{a}^{b} \frac{1}{\beta_1 \tilde{v}} \left(\frac{1}{e^{2\pi i \rho_1} - 1} + \frac{c_1 \tilde{v}^{-\beta_1}}{e^{2\pi i (\rho_1 - \beta_1)\tilde{v}} - 1} + \frac{c_2 \tilde{v}^{-\beta_1}}{e^{2\pi i (\rho_1 - \beta_1)\tilde{v}} - 1} + \cdots \right) d\tilde{v} \]

(2.39)

When \(x \) tends to 0, the 2nd term in the RHS reduces to

\[\Gamma(\gamma) \int_{h}^{\infty} v^{\alpha_1'-1}(v - 1 - v\beta_1 x)^{-\gamma} dv \]

provided \(\alpha_1' - \beta_1' \gamma < 0 \), in which case we have

\[\zeta_{0,0} = \Gamma(\gamma) \int_{1}^{\infty} v^{\alpha_1'-1}(v - 1)^{-\gamma} dv \]

which is equal to (2.35).

In case where \(\alpha_1' - \beta_1' \gamma \geq 0 \), since \(\zeta_{0,0} \) can be given as a regularized integral, one can show that (2.35) is still true.

Proposition 5 has thus been proved.

As a consequence, the formula (1.23) can be written as follows

\[W(x) = U_0[F](x) + U_1[G_1](x) \]

where \(U_0 = \frac{\pi \sin \pi \alpha_1'}{\sin \pi \gamma \sin \pi \alpha_1} \) and \(U_1 = -\frac{\pi \sin \pi (\rho_1 + \gamma)}{\beta_1 \sin \pi \gamma \sin \pi \rho_1} \).

\(\sigma_0 F(x) \) is expressed in the form (2.27).

3. Theorem and Conjecture in General Case

Now we assume \(r, s \geq 1 \) are general. For convenience we use the notations

\[\beta_{r+1}' = -\beta_1, \ldots, \beta_{r+s}' = -\beta_s, \]

\[\alpha_{r+1}' = 1 - \alpha_1, \ldots, \alpha_{r+s}' = 1 - \alpha_s. \]
Let the functions $\Phi(v, x)$ be defined by

\begin{equation}
\Phi(v, x) = v_1^{\alpha_1-1} \cdots v_n^{\alpha_n-1} \{v_1 + \cdots + v_n + 1 - g(v)x\}^{-\gamma}
\end{equation}

or

\begin{equation}
\Phi(v, x) = v_1^{\alpha_1-1} \cdots v_n^{\alpha_n-1} \{v_1 + \cdots + v_r - 1 - v_{r+1} - \cdots - v_n - g(v)x\}^{-\gamma}
\end{equation}

for $r \geq 2$, $s = 0$, or $r \geq 1$, $s \geq 1$, where $g(v)$ denotes the power $v_1^{\beta_1} \cdots v_n^{\beta_n}$.

We want to find a pair of n dimensional twisted cycles C_0 and L_0 depending on x, $x \neq c$ continuously, such that

\begin{equation}
F(x) = \frac{\Gamma(\gamma)}{(2\pi i)^s} \int_{C_0} \Phi(v, x) dv_1 \wedge \cdots \wedge dv_n
\end{equation}

\begin{equation}
W(x) = \Gamma(\gamma) \int_{L_0} \Phi(v, x) dv_1 \wedge \cdots \wedge dv_n
\end{equation}

satisfy the following properties.

(i) The intersection number between C_0 and L_0 as chains is equal to $(-1)^n$, i.e.,

\begin{equation}
I(C_0, L_0) = (-1)^n
\end{equation}

(ii) When $x = 0$, the RHS of (3.2) and (3.3) reduce to

\begin{equation}
\frac{1}{(2\pi i)^s} \int_{C_0} \Phi(v, 0) dv_1 \wedge \cdots \wedge dv_n = \frac{\Gamma(\alpha'_1) \cdots \Gamma(\alpha'_r)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_s) \Gamma(\gamma)}
\end{equation}

\begin{equation}
\int_{L_0} \Phi(v, 0) dv_1 \wedge \cdots \wedge dv_n = (-2\pi i)^{r-1} \frac{\Gamma(1 - \alpha_1) \cdots \Gamma(1 - \alpha_s) \Gamma(1 - \gamma)}{\Gamma(1 - \alpha'_1) \cdots \Gamma(1 - \alpha'_r)}
\end{equation}

We denote the LHS of (3.5) and (3.6) by $J_1(\alpha', \alpha)$ and $J_2(\alpha', \alpha)$, respectively.

(iii) The generalized Picard-Lefschetz transformation for σ_0 (due to F. Pham, see [13, 14]) is expressed as

\begin{equation}
\sigma_0 : C_0 \to C_0 + (1 - e^{-2\pi i\gamma})L_0
\end{equation}

\begin{equation}
L_0 \to (-1)^n e^{-2\pi i\gamma} L_0
\end{equation}

so that we have

\begin{equation}
\sigma_0 F(x) = F(x) + \frac{1 - e^{-2\pi i\gamma}}{(2\pi i)^s} W(x)
\end{equation}

\begin{equation}
\sigma_0 W(x) = (-1)^n e^{-2\pi i\gamma} W(x)
\end{equation}

The cycles C_0, L_0 can be constructed in a geometric way in the following manner.
Let \(\omega'_1, \ldots, \omega'_r, \omega_1 \ldots \omega_s \) be positive integers, such that \(\omega_0 = \sum_{j=1}^{r} \omega'_j > 0 \) \((s = 0)\) and \(\omega_0 = \sum_{j=1}^{r} \omega'_j - \sum_{j=1}^{s} \omega_j \) \((s \geq 1)\) are both positive. We fix complex numbers \(\alpha'_j, \alpha_j \) and \(\gamma = \sum_{j=1}^{r} \alpha'_j + s - \sum_{j=1}^{s} \alpha_j \). We want to apply Morse theory to the integrals (3.2), (3.3), (3.5) and (3.6). According as \(x \neq 0 \) or \(x = 0 \) we consider the level function \(H(x) \) or \(H(0) \) in the directions \(\pm(\omega', \omega) = \pm(\omega'_1, \ldots, \omega'_r, \omega_1 \ldots \omega_s) \)

\[
H(x) = \sum_{j=1}^{r} \omega'_j \log |v_j| - \omega_0 \log |f(v, x)| \quad (s = 0)
\]

\[
= \sum_{j=1}^{r} \omega'_j \log |v_j| - \sum_{j=1}^{s-1} \omega_j \log |v_{j+r}| - \omega_0 \log |f(v, x)| \quad (s \geq 1)
\]

where \(f(v, x) \) denotes

\[
f(v, x) = \begin{cases} v_1 + \cdots + v_n + 1 - g(v)x & (s = 0) \\ v_1 + \cdots + v_r - 1 - v_{r+1} - \cdots - v_n - g(v)x & (s \geq 1) \end{cases}
\]

respectively.

For a fixed \(x \) such that \(0 \leq x < c \), we can define the gradient vector field \(V(x) \) in the space \(\mathbb{C}^n - \cup_{j=1}^{n} \{v_j = 0\} \cup \{f(v, x) = 0\} \)

\[
V(x) = \text{grad}_v H(x)
\]

\[
= \left(\frac{\partial H}{\partial \text{Re} v_1}, \ldots, \frac{\partial H}{\partial \text{Re} v_n}, \frac{\partial H}{\partial \text{Im} v_1}, \ldots, \frac{\partial H}{\partial \text{Im} v_n} \right)
\]

In particular \(V(0) \) has the unique critical point \(v = v(c) \)

\[
v(c) : \begin{cases} v_j = \omega'_j (1 \leq j \leq r - 1) & \text{for } s = 0 \\ v_j = \omega'^{j} s_j (1 \leq j \leq r), v_{j+r} = \omega^{j}_j (1 \leq j \leq s - 1) & \text{for } s \geq 1 \end{cases}
\]

such that \(f(v(c), 0) = \frac{\omega_0}{\omega'_r} (s = 0) \) or \(\frac{\omega_0}{\omega'_s} (s \geq 1) \) which is positive.

Let \(C_0 \) and \(L_0 \) be the cycles constructed in the complement \(\mathbb{C}^n - \bigcup_{j=1}^{n} \{v_j = 0\} \cup \{f(v, 0) = 0\} \) such that in a neighbourhood of the critical point \(v(c) \) they are stable and unstable with respect to the vector field \(V(0) \). Then the pair \(C_0 \) and \(L_0 \) satisfies (3.4) for \(x = 0 \).

We are now in a position to prove (3.5) and (3.6).
The LHS of (3.5) and (3.6) both satisfy the difference equations

\[T_{\alpha_k} J_1(\alpha', \alpha) = \frac{\alpha'_k}{\gamma} J_1(\alpha', \alpha) \]
\[T_{\alpha_k} J_1(\alpha', \alpha) = \frac{\gamma - 1}{\alpha_k} J_1(\alpha', \alpha) \]

(3.12)

When \(N \) tends to \(+\infty\) in the direction \((\omega', \omega)\), we see by saddle point method that \(J_1(\alpha', \alpha) \) has the asymptotic

\[J_1(\alpha', \alpha) \sim (2\pi)^{\frac{n}{2}} N^{-\frac{n}{2}} \omega_1^{\alpha_1} \cdots \omega_r^{\alpha_r} \omega_1^{\alpha_1} \cdots \omega_s^{\alpha_s} + \frac{1}{2} \omega_0^{\gamma + \frac{1}{2}} \]

(3.13)

The RHS of (3.5) also satisfies (3.12) and has the same asymptotic as (3.13), whence they must coincide.

On the contrary, when \(N \) tends to \(+\infty\) in the opposite direction \((-\omega', -\omega)\), \(J_2(\alpha', \alpha) \) and the RHS of (3.6) satisfy (3.12) and have the same asymptotic as the RHS of (3.13), whence these two must coincide. Property (ii) has thus been shown.

As \(x \) moves from 0 to \(c - \epsilon \) along the real axis, the cycles \(C_0 \) and \(L_0 \) can be deformed in an isotopic way such that they are stable and unstable cycles as to the vector field \(V(x) \) respectively for each \(x \). They always satisfy (3.4). When \(x \) approaches \(c \), the cycle \(L_0 \) vanishes. We want to show from the formula (3.3), that \(W(x) \) has the expansion (2.8) and evaluate the 1st coefficient \(a_0^* \).

When \(x = c \), the critical point for the function \(H(x) \) coincides with the point \(\left(\frac{\beta'_1}{\beta'_r}, \cdots, \frac{\beta'_{s-1}}{\beta'_r} \right) \) (s = 0), \(\left(\frac{\beta'_1}{\beta'_r}, \cdots, \frac{\beta'_{r-1}}{\beta'_r}, \cdots, \frac{\beta'_{s-1}}{\beta'_r} \right) \) (s \(\geq 1 \)).

Near the critical point there exist local coordinates \((w_1, \ldots, w_n)\) such that

\[f(v, x) = c - x + w_1^2 + \cdots + w_{r-1}^2 - w_r^2 - \cdots - w_n^2. \]

(3.14)

Near \(x = c \) the cycle \(L_0 \) is homologous to the \(n \) dimensional disk defined by

\[D = \{ (t_1, \ldots, t_n) \in \mathbb{R}^n; \ c - x \geq t_1^2 + \cdots + t_n^2 \} \]

for \(w_1 = -it_1, \ldots, w_{r-1} = -it_{r-1}, w_r = t_r, \ldots, w_n = t_n \). It shrinks to a point and therefore vanishes at \(x = c \).

The integral (3.3) is rewritten as

\[W(x) = \Gamma(\gamma) \int_D v_1^{\alpha'_1 \gamma - 1} \cdots v_n^{\alpha'_n \gamma - 1} \]
\[(c - x - t_1^2 - \cdots - t_n^2)^{-\gamma} \frac{\partial(v_1, \ldots, v_n)}{\partial(t_1, \ldots, t_n)} dt_1 \wedge \cdots \wedge dt_n \]

(3.16)
where \(\frac{\partial(v_1, \ldots, v_n)}{\partial(t_1, \ldots, t_n)} \) denotes the Jacobian of the variables \(v_1, \ldots, v_n \) relative to \(t_1, \ldots, t_n \).

The Hessian of the quotient \(f(v, x)/g(v) \) with respect to \(v_1, \ldots, v_n \) at \(v(c) \) is equal to

\[
(-1)^s e^n \frac{\beta_{s-1}}{\beta_1 \ldots \beta_r \beta_1 \ldots \beta_s}
\]

which implies

(3.17) \[\left[\frac{\partial(v_1, \ldots, v_n)}{\partial(t_1, \ldots, t_n)} \right]_{v=v(c)} = e^{-\frac{\gamma}{2}} \sqrt{\beta_1 \ldots \beta_r \beta_1 \ldots \beta_s} \frac{(-i)^{r-1}}{\beta_{s-1}} \]

The formulae for \(a_0 \) and \(a_0^* \) are evaluated from (3.16) and (3.17) as follows.

Theorem 1. \(W(x) \) has the expansion (2.8) such that

(3.18) \[a_0^* = (-i)^{r-1}(2\pi)^{\gamma} \frac{\Gamma(1 - \gamma)\Gamma(\gamma)}{\Gamma(\delta + 1)} \prod_{j=1}^n \beta_j e_j' \]

where

(3.19) \[e_j' = \alpha_j' + \beta_j' \delta - \frac{1}{2} \]

(Remark that we have put \(\alpha_j = 1 - \alpha_{j+r}, \beta_j = -\beta_{j+r} \) for \(1 \leq j \leq s \), and

\(a_0 = \frac{(1 - e^{-2\pi i})}{(2\pi i)^{n} (e^{2\pi i\delta} - 1)} a_0^* \)

As for the 2nd Problem, as a generalization of the formulae (2.17) and (2.40) one may make the following

Conjecture 1. \(W(x) \) has the asymptotic expansion (1.23)

(3.20) \[W(x) = \zeta_{0,0} + \zeta_{0,1} x + \zeta_{0,2} x^2 \ldots \]

\[+ \sum_{k=1}^s \zeta_{k,0} + \zeta_{k,1} x^{\frac{1}{k}} + \zeta_{k,2} x^{\frac{2}{k}} \ldots \]

at the origin such that

(3.21) \[U_0(\alpha', \alpha) = (-2\pi i)^{r-1} \frac{\pi}{\sin \pi \gamma} \prod_{j=1}^r \sin \pi \alpha_j' \frac{\pi}{\sin \pi \alpha_j} \]

\[\prod_{j=1}^s \frac{\pi}{\sin \pi \alpha_j} \]

\[U_k(\rho_k, \{\alpha_j' + \beta_j' \rho_k\}_{j=1}^r, \{\alpha_j + \beta_j \rho_k\}_{j=1}^s) \]

(3.22) \[= \frac{1}{\beta_k \sin \pi \rho_k \sin \pi \gamma} \prod_{j=1}^r \sin \pi (\alpha_j' + \beta_j' \rho_k) \frac{\pi}{\sin \pi \alpha_j + \beta_j \rho_k} \]

\[\sigma_0 F(x) \] is expressed in the form (3.8).
In the sequel we show in a few special cases that the formula (3.21) and (3.22) are true.

Assume first $s = 0$. For $0 < x < c$, C_0 can be realized as the real domain
\[v_1 \geq 0, \ldots, v_n \geq 0, \]
while C_0 lies in the totally imaginary space such that its intersection with the real space \mathbb{R}^n consists of only the critical point of $V(x)$. As x decreases from $c - \epsilon$ to 0, C_0 remains compact and moves smoothly. Hence $W(x)$ is holomorphic at the origin, and we get the formula (3.6)
\[W(0) = \Gamma(\gamma) \int_{\mathcal{L}_0} \ldots \cdot (1 + v_1 + \cdots + v_n)^{-\gamma} dv_1 \wedge \cdots \wedge dv_n \]
\[= (-2\pi i)^n \frac{\Gamma(\gamma)\Gamma(1 - \gamma)}{\Gamma(1 - \alpha'_1) \cdots \Gamma(1 - \alpha'_n)} = (-2\pi i)^n \frac{\sin \pi \alpha'_1}{\pi} \cdots \frac{\sin \pi \alpha'_n}{\sin \pi \gamma}. \]

This shows Conjecture is true for $s = 0$.

On the other hand, when $r = 1$, for $0 < x < c$, C_0 can be realized as a compact real domain defined by
\[f(v, x) \geq 0 \]
while C_0 becomes totally imaginary. We proceed as in having derived (2.36)--(2.39). As x tends to 0, C_0 becomes enlarged to the whole n-simplex Δ defined by
\[v_1 - 1 - v_2 - \cdots - v_n \geq 0, \quad v_2 \geq 0, \ldots, v_n \geq 0 \]
so that we have
\[\zeta_{0, 0} = \Gamma(\gamma) \int_{v_1 \geq 0, \ldots, v_n \geq 0} \ldots \cdot (1 + v_1 + \cdots + v_n)^{-\gamma} dv_1 \wedge \cdots \wedge dv_n \]
\[= \Gamma(\gamma) \frac{\Gamma(1 - \alpha'_1) \cdots \Gamma(1 - \alpha'_n)\Gamma(1 - \gamma)}{\Gamma(1 - \alpha'_1)} \]
\[= \frac{\pi^n \sin \pi \alpha'_1 \cdots \sin \pi \alpha'_n}{\sin \pi \gamma \sin \pi \alpha_1 \cdots \sin \pi \alpha_n} F(0). \]

The boundary of Δ consists of $n - 1$ dimensional faces Δ_{k-1} defined by
\[\Delta_{k-1}(n \geq k \geq 2) : v_k = 0, \quad v_j \geq 0 (j \geq 2, j \neq k), \quad v_1 - 1 - v_2 - \cdots - v_n \geq 0 \]
and
\[\Delta_0 : v_2 \geq 0 (j \geq 2), \quad v_1 - 1 - v_2 - \cdots - v_n = 0 \]

Let $D_j (n - 1 \geq j \geq 2)$ be the closed set in Δ which is the composite of all segments connecting $v(c)$ and points in Δ_j and let D_n be defined by the
inequalities
\begin{align}
 v_1 - v_1(c) - (v_2 - v_2(c)) - \cdots - (v_n - v_n(c)) & \geq 0, \\
v_2 & \geq v_2(c), \cdots v_n \geq v_n(c)
\end{align}
(3.29)
such that we have \(\Delta = \bigcup_{j=0}^{n} D_j \). Then the closure of the complement \(\Delta - [L_0] \)
([L_0] denotes the support of \(L_0 \)) is divided into
\begin{align}
 \Delta - [L_0] = \bigcup_{j=0}^{n} D_j \cap \Delta - [L_0].
\end{align}
(3.30)
(See Figure 6.)

We can construct a twisted cycle \(C_j^* \) such that the support \(C_j^* \) contains \(D_j \cap \Delta - [L_0] \) and that the support of the boundary of \(C_j^* \) denoted by \(\partial C_j^* \) is contained in the set \(\{ f(v, x) = 0 \} \cup \{ v_j = 0 \} \).

We put
\[\tilde{v}_{k+1} = (v_1 - 1 - v_2 - \cdots - v_n)/g(v) \]
and make a change of variables from \((v_1, \ldots, v_n) \) into \((\tilde{v}_{k+1}, v_1, v_2, v_{k+2}, \ldots, v_n) \). One can show that the function \(\tilde{G}_k(x)(1 \leq k \leq s) \) defined by the integral
\begin{align}
 \tilde{G}_k(x) = \Gamma(\gamma) \int_{C_k^*} v_1^{\alpha_1'-1} \cdots v_n^{\alpha_n'-1} f(v, x)^{-\gamma} dv_1 \wedge \cdots \wedge dv_n
\end{align}
(3.31)
has the asymptotic as
\begin{align}
 \tilde{G}_k(x) = x^{\rho_k} \left(\xi_{k,0} + \xi_{k,1} x^{1/\beta_k} + \cdots \right)
\end{align}
(3.32)
To evaluate \(\xi_{k,0}(1 \leq k \leq n-1) \), we first integrate (3.31) over \(C_k^* \) with respect to \(\tilde{v}_{k+1} \) and then with respect to the remaining variables.

Indeed \(\xi_{k,0} \) has the integral representation
\begin{align}
 \xi_{k,0} = \Gamma(\gamma) \int_{0}^{x} \frac{1}{\beta_k} v_k^{\rho_k+\gamma} (x - \tilde{v}_{k+1})^{-\gamma} \frac{dv_{k+1}}{\tilde{v}_{k+1}}
 \int_{\Delta_k} \prod_{j=1}^{k-1} v_j^{\alpha_j' + \beta_j' \rho_k - 1} \prod_{j=k+1}^{n} v_j^{\alpha_j' + \beta_j' \rho_k - 1}
 (v_1 - 1 - \cdots - v_k - v_{k+2} - \cdots - v_n)^{-\rho_k - \gamma} dv_1 \wedge \cdots dv_k \wedge dv_{k+2} \wedge \cdots \wedge dv_n
\end{align}
(3.33)
The result is given as follows

\[
\hat{\xi}_{k,0} = \frac{1}{\beta_k} \frac{\pi}{\sin \pi(\rho_k + \gamma)} \sin \pi \gamma \frac{\pi}{\Gamma(\rho_k + 1) \Gamma(1 - \alpha'_{j} - \beta_{j}\rho_{k})} \prod_{j=1}^{k-1} \frac{\Gamma(1 - \alpha_j - \beta_j \rho_k)}{\Gamma(1 - \alpha_{j-1} - \beta_{j-1} \rho_{k})} \prod_{j=k+1}^{n} \frac{\Gamma(1 - \alpha_j - \beta_j \rho_k)}{\Gamma(1 - \alpha_{j-1} - \beta_{j-1} \rho_{k})}.
\]

(3.34)

When \(k = 1 \), we make a change of variables \((v_1, \ldots, v_n)\) into \((v_1 - 1 - v_2 - \cdots - v_n)/g(v), v_1 v_2, \cdots, v_1 v_n)\) and obtain a similar representation to (3.33) giving (3.34).

Hence we have the equality

\[
\hat{G}_k(x) = \hat{U}_k[G_k](x)
\]

where \(\hat{U}_k \) denotes

\[
\hat{U}_k(\rho_k, \{\alpha'_1 + \beta'_1 \rho_k\}, \{\alpha_j + \beta_j \rho_k\}_{j=1,j\neq k}) = \frac{1}{\beta_k} \frac{\pi}{\sin \pi \gamma} \frac{\pi}{\sin \pi(\rho_k + \gamma)} \frac{\pi}{\prod_{j=1,j\neq k}^{n} \sin \pi(\alpha_j + \beta_j \rho_k)} \prod_{j=1}^{n} \sin \pi \gamma \prod_{j=1}^{n} \sin \pi(\rho_k + \gamma)
\]

One can show that

(3.35)

\[
W(x) = U_0[F](x) + \sum_{k=1}^{n} U_k[G_k](x)
\]

where

(3.36)

\[
U_0 = \frac{\pi^n \sin \pi \alpha'_1}{\sin \pi \gamma \prod_{j=1}^{n} \sin \pi \alpha_j}
\]

\[
U_k = -\frac{\sin \pi(\rho_k + \gamma)}{\sin \pi \rho_k} \hat{U}_k
\]

Conjecture has thus been verified.
Fig. 2

Fig. 3

Fig. 4

Fig. 5
References

Graduate School of Mathematics, Nagoya University, Furo-cho 1, Chikusa-ku, Nagoya, Japan

70-3 Shinhari, Hari, Anan, Japan