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The Schrodinger's dream:
Electronic structure of DNAs and proteins:
Quantum automata

Kazumoto Iguchi
X-Ray Crystallography Laboratory

The concepts of classical and quantum automata are introduced, and it is shown that those play an essential role
in order to obtain electronic structures of DNAs and proteins. The classical automata are standard automata
that construct a string of symbols. If one wishes to constder the electronic states on the string of symbols, one
must regard the symbols as the 2 x 2 transfer matrices and treat their traces. This provides another dimension

of automata, that is, quantum automata.

Introduction

One of dreams of theoreticians is to solve the Schrodinger
equation with a potential that is given as a one-dimensional
array of the real DNA and protein sequences.” DNAs consist
of the four nucleotides and proteins up to the twenty amino
acids. They form alphabet to represent the sequences. A
string of DNA or that of protein is a very complicated and
nonperiodic arrangement of the bases with a very long length.
Therefore, one meets a problem of an electron motion in such
a nonperiodic potential. This is a crucial and inevitable proce-
dure in order to obtain electronic structures of the DNAs and
proteins. This problem has been a main theme in quantum
molecular biology, which I would like to call the Schrddinger’s
dream.? However, this has been unsolved for a long time since
the discovery of DNA structure - Watson-Crick’s double he-
lix. In this paper I would like to pay our attention to recent
developments in theoretical and mathematical physics, which
seem relevant to solve the above biclogical problem to my
eyes.

Schrodinger equation with a nonperiodic sequence

Until recently, theoretical and mathematical physicists have
been struggling to make a theory for the so-called quasiperi-
odic systems.? In this problem one wishes to solve the dis-
crete Schrodinger equation with a deterministic potential se-
quence: Tnt1¥n+1 + Tutfn-1 + Vathn = Et)n, where T, is
the hopping integral between the nth and the (n-1)th sites
and V, the on-site potential at site n, respectively. The po-
tentials T, and Vi, take on diflerent values according to the
distinct atoms. This enables one to define a nonpcriodic po-
tential in the system. One now would like to obtain elec-
tronic structure of the system. To do this, it is convenient to
map the Schrodinger equation into the transfer matrix form:
Vpr1 = T{n)¥y, , where the transfer matrix T'(n) is defined
by a 2 x 2 matrix T(n) = (E — V,.)/Tos1, —=Tn/Taq1; 1,0),
and the wave function ¥, = (¥, Pn—1). If the system con-
sists of N atoms, then one has to multiply the N trans-
fer matrices such that ¥hin = M(N)W,, where M(N) =
T(n+N-1)T(n+N—2)---T(n). And from the Bloch theo-

rem W, 4N = explikN|¥,, one can state a simple approach to
obtain energy bands: If Tr[A(N)] <€ 2, then an energy lies in
a band, otherwise it lies in a band gap. In this way, one finds
that the trace of a product of the transfer matrices plays an
essential role in order to obtain the electronic spectrum of the
system.

Some examples in mathematical physics

Physicists found that if the total number of atoms in the
system is developed dynamically and given recursively such
as Ngy1 = Np + Np—1 with N1 = Ny = 1, then the
trace itself is given recursively as well such that zpy1 =
2Ty+1%, — Tk—2, where zy = Tr[M(Ng)]/2, and this is
called the trace map. This is a famous example of the Fi-
bonacci lattice given by a deterministic substitution scheme,
A — AB, B — A.% This provides a sequence of A and B such
as B—+ A — AB — ABA — ABAAB — ABAABABA —
ABAABABAABAAB — ---. So, this system is represented
compactly by Sk+1 = SpSk—1 with S; = “A” and 5y = “B”.
This idea has been generalized to the systerns with an arbi-
trary number of letters in the alphabet, say 7 letters.”Y) One
now finds that if a potential is represented by a determin-
istic substitution scheme: 51(;21 = W',E” [Sil),S}(f),--l,Sg‘)]
for i = 1,...,7, where VVS) stands for any word made by
Sf,yl), S,EQ)., e Sff), then the dimension of the trace map (i.e.,
the minimal number of traces representing the trace map) is
given by r(r + 1)/2.*) This was recently reduced even more
to 3r — 3.9

Mathematical representation of evolution

Consider an evolution of a DNA or a protein chain. At first
stage therc is only one base, say X. Next, by synthesis an-
other base, Y, can be combined to either left or right of the
first one such as XY or YX. If Y = X, this represents a
duplication of the basc. So, a mathematical representation of
base evolution can be described by several simple operations:
identity, I(X,Y) = (X,Y); inversion, J(X,Y) = (X7, Y);
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exchange, X(X,Y) = (Y, X); left or right multiplication,
L(X,Y) = (X, YX) or R(X,Y) = (X,XY). For exam-
ple, a string XR provides the Fibonacci evolution such that
XR(X,Y) = (XY, X), and by repeatedly using this, one can
get the Fibonacci sequence of X and Y.» Thus, to me the
mathematical structure of DNA and protein evolution pro-
cess is nothing but that in the theory of quasiperiodic sys-
tems. For the r-letter case this is summarized as in Table 1,
and was found that it is equivalent to the concept of Nielsen
transformations.”

Table 1. The Nielsen transformations with r letters. Permutation PP
appears only for r > 2.

Classical and quantum automata

This type of theory for construction of the system is basi-
cally written in the language of automaton,>” and therefore,
s0 is the mathematical structure of the evolution processes.
However, this only describes how to construct the potential
in the system, but one has to solve the Schrédinger equation
with this potential as discussed before. If one wishes to do
this, then one must consider the trace of the product of the
transfer matrices even for the system in biology as well. In
this way, when an electronic structure is considered, the au-
tomaton for the construction of the system is lifted to that
of the transfer matrices. The latter provides quantum infor-
mation of the system while the former provides information
of lattice structure of the system. Therefore, one is naturally
led to the concepts of classical and quantum automata. This
is schematically shown in Fig. 1, and 1 show an example of
the electronic structure in Fig. 2. Thus, T would like to con-
clude that the quantum automaton will play an essential role
in order to obtain the electronic structure of very complicated
molecules such as DNAs and proteins. This direction is just
opened and waiting for you.
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Fig. 1. Classical and quantum automata. Automata on symbols are
lifted to automata on transfer matrices. Automata on numbers
and on traces are obtained as projection from automata on symbols
and on transfer matrices, respectively.
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Fig. 2. Electronic structure of quasiperiodic lattices of AB;_,C\: for
0 < = < 1, where x is the density of the unit AC in the chain.
The case of (T, T, Te) = (1,1.4,1.2) is drawn.
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